Current TRENDS in the DORIS SYSTEM

Albert Auriol DORIS Product line Manager CNES/DCT/PO/AL

acknowledgements to : Jean Pierre Granier, C. Jayles, Pierre Sengenes, Gilles Tavernier (CNES) , F. Rozo (COFRAMI), P. Souty (TAS)

SUMMARY

- Current/Planed DORIS Missions
- On board receivers
 - 2G, 2GM, Cryosat receivers
 - future receivers
- **→ Network**
 - 3rd generation beacon
 - New Master Beacon
 - New Time Beacons?
- **▶ EGSEs**
- DORIS ground segment: SSALTO

A Long Life System

POD

Models

IERS

Positioning

Navigation

Datation

SPOT4

HY2, AQUARIUS (TBC)

2G DORIS receiver: ENVISAT

- Dual tracking ability: 2 beacons tracked simultaneously
- measurement resolution improved (1/4)
- ▶ New routine measurement mode : Autonomous mode
 - DIODE directives for beacon signal acquisition
 - daily uploads no longer needed
- **▶** Increased instrument operational robustness:
 - more autonomous onboard software
 - wide range time correction
 - ♦ DIODE navigation function included in the flight sw and "lost in space" start
 - measurement mode autonomous management
 - radiation-hardened processor,
 - EDAC and scrubbing task to prevent from mass memory upsets
- improved DIODE real time orbit accuracy
 - orbit estimation : ~ 20-30 cm radial rms, 1 m 3-D rms position accuracy
 - TAI estimation : ~ 1-2 μsec rms

Dual channel receivers orbit coverage

ex, Jason1 Oct 13-14 2002

At least 1 beacon: 93.4 %; 2 different beacons: 62.9 %

2G miniaturised DORIS receiver

- **→** 50 % size & mass reduction compared with ENVISAT 2G receiver
- Numerical processing
 - accurate phase measurements
- Cold start => from Switch On to routine w/o any ground commands
 - Thanks to TAI date transmitted by 3rdG beacons, and Time beacons
- Automatic update of onboard network description via Master Beacon broadcast

Operated on board JASON1, SPOT5

CRYOSAT receiver

- New processor
 - Sparc ERC 32
 - improved arithmetic (improves quality of on-board processing)
- 2 redounded EEPROM banks to store the OBSW
 - no more PROM
 - OBSW maintenance improved
- New SoftWare
 - Full SW upload w/o any mission interruption
 - Provision of real time navigation in J2000 (SCAO use)
 - Self-content raw measurements TM Packets
 - ♦ TAI dating (1µs RMS) for raw measurements
 - on-board frequency estimation
 - time delays
 - Improved RAIM and FDIR
 - deletion of IDLE and Incident modes
 - simplified operations

Current Trends in the DORIS System

DGXX receivers

- **▶** At least 6 channels => capacity to track 6 beacons simultaneously
- ▶ New USO
 - increased stability
 - less sensitive to radiation
- Spectral analysis
 - beacon frequency search using FFT => shorter cold start (SCAO use)
 - spectral analysis mode maintained on one chanel
 - new/unknown beacon (network, positioning)
 - ♦ safe mode
 - Jamming measurements performed simultaneously with main mission
- Satellite attitude taken into account on board (quaternions)
- → 5 boxes (2GM, Cryosat) --> 1 box
 - simplified integration on the satellite
- Planed on JASON2

Doris DGxx instrument digest

mass : BDR 16.5 kg - antenna 2 kg

overall dimensions (mm)

BDR: 388 x 366 x 165 Antenna: \$\phi\$ 160 x 428

power consumption : < 24 W</p>

→ TM rate : ~ 1 Kbits/sec

internal redundancy
 # 2 independent complete DORIS
 receivers in the same box
 # Antenna RF signals are
 automatically switched to
 the active DORIS receiver

provides 3 reference frequency outputs (10 MHz USO) for

POSEIDON-3 altimeters & WSOA

BDR: Redundant DORIS Box

Paris - May 3-4 /2004

Beacons Network

- **→** Antenna change
- **→** Antenna support stability Improvement
- **→** Antenna positioning improvement
- **→** 3rd G beacon deployment

3G beacon: main new features

- Frequency shift: <u>+</u> 50 kHz / 2GHz; <u>+</u> 10 kHz / 400 MHz
 - => network density may be increased
- ➡ Beacon message and synchro. word transmitted on both 400 MHz & 2 GHz signals with EDAC code on 2GHz
 - => improves datation accuracy
 - => improves data reception on board
- Transmission of current non ambiguous TAI date
 - => allows receivers cold start
- Improved monitoring of beacon operation status (USO Warm-up)
 - => avoid erroneous processing
- Restart mode
 - => beacon switched ON without any time set
 - => beacon switch Off detection; avoid erroneous processing
- remote control capacity
- can be easily upgraded into Time or Master Beacon

A new Master Beacon

- **→** Why ?
 - Faster cold start of the receivers (SCAO users)
 - robustness
- → Where ?
 - Any reliable site (power and data link with DORIS Ground Segment)
 - coverage improvement (no co-visibility with already existing MB)
 - ♦ HBK : installation planed before end of 2004

A new Master Beacon

Visibilités TOULOUSE, KOUROU, HARTEBEESTHOEK pour JASON (site mini 12 deg) Avec 2 traces d'orbites consécutives, 1 minute entre 2 points

Current Trends in the DORIS System

13

IDS Plenary Meeting Paris - May 3-4 /2004

New Time Beacons (TBC)

- → Why ?
 - improved on-board USO monitoring (JASON1)
 - faster cold start of the receivers (SCAO users)
- → Where ?
 - Any site assuming a reliable atomic clock is available
 - * St Johnes site currently under study

New EGSEs

- simulation of RF signals as seen by the on board receiver in flight including beacon messages, beacon time scales, broadcast transmission
 - ground tests representativity improved
 - useful for system investigations

Already successfully used for DORIS/CRYOSAT OBSW validation

SSALTO multi-missions orbitography and altimetry center

- Taking into account new missions
- System control
 - broadcast generation
 - monitoring tools
- Pre-processing improvements
 - datation, beacons time correction
 - data edition (centre frequency wrong measurements)
- POD Processing improvements
 - troposphere effect
 - USO frequency modelling currently under study
- SSALTO improved characteristics
 - modular conception allowing new instruments to be easily integrated
 - centralised data archiving
 - includes public results interface and distribution
 - beacons positioning is included in operational processing

Conclusion

- DORIS System evolutions
 - to be closer to users needs
 - to increase reliability
 - to reduce cost

→ Any suggestions?

